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Commentary

The goal of this consortium (Fish Toxico
genomics—Moving into Regulation and 
Monitoring, held 21–23 April 2008 at the 
Pacific Environmental Science Centre, 
Vancouver, BC, Canada) was to assess cur
rent developments leading to the incorpora
tion of omic technologies into environ mental 
risk assessment and environmental monitor
ing, particularly in relation to aquatic eco
toxicogenomics. Participants recognized that 
omic tools and associated end points are 
already significantly improving our understand
ing of how individual chemicals and mixtures 
affect organisms and could ultimately influence 
risk assessment and environmental manage
ment. Although a significant amount of basic 
research and validation is needed before omic 
end points are incorporated as complemen
tary data for routine assessments of environ
mental risk, participants generally agreed that 
there are no roadblocks for omics technology 
per se, but there are hurdles along the road of 

discovery, acceptance, and implementation 
of omic end points. Given the context of the 
workshop, it is important to note that “the 
successful incorporation of toxico genomics 
into regulatory frameworks may someday be 
regarded as the most important intellectual 
and practical contribution from this generation 
of eco toxicologists” (Ankley et al. 2006).

Benefits and Successful 
Applications of Omics in 
Ecotoxicology and Ecological 
Risk Assessments

Historical challenges and recent developments 
for regulatory implementation. Previous pub
lications and workshops (e.g., Ankley et al. 
2006; Boverhof and Zacharewski 2006) have 
discussed the potential application of omic 
technologies to risk assessment. The use of 
omic technology in toxicology (toxico
genomics) was initiated after the development 

of the first highdensity techniques (micro
arrays). However, excitement surrounding 
this new technology generated “hype” that 
yielded unrealistic expectations of the time
line for incorporation into risk assessment. 
There is now a more realistic understand
ing of the potential contribution of omics 
to toxicology [National Research Council 
(NRC) 2007]. A multi level systems biology 
approach to safety assessment—combining 
molecular (including mRNA, protein, and 
metabo lites), cellular, tissue, individual, and 
populationlevel data—represents a power ful 
new multi disciplinary approach that identifies 
biomarkers with muchimproved predictive 
capacity.

Many initial concerns and difficulties have 
been overcome. The high cost of micro arrays 
imposed severe restrictions on the number of 
doses, replicates, and time points assessed after 
chemical administration to biological systems. 
As a consequence, reported omic responses 
frequently reflected pathological change with 
no evident predictive value. Methodology 
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Background: In this commentary we present the findings from an international consortium 
on fish toxicogenomics sponsored by the U.K. Natural Environment Research Council (Fish 
Toxicogenomics—Moving into Regulation and Monitoring, held 21–23 April 2008 at the Pacific 
Environmental Science Centre, Vancouver, BC, Canada). 

oBjectives: The consortium from government agencies, academia, and industry addressed three 
topics: progress in ecotoxicogenomics, regulatory perspectives on roadblocks for practical imple-
mentation of toxicogenomics into risk assessment, and dealing with variability in data sets.

discussion: Participants noted that examples of successful application of omic technologies have 
been identified, but critical studies are needed to relate molecular changes to ecological adverse out-
come. Participants made recommendations for the manage ment of technical and biological varia-
tion. They also stressed the need for enhanced interdisciplinary training and communication as well 
as considerable investment into the generation and curation of appropriate reference omic data. 

conclusions: The participants concluded that, although there are hurdles to pass on the road to 
regulatory acceptance, omics technologies are already useful for elucidating modes of action of toxi-
cants and can contribute to the risk assessment process as part of a weight-of-evidence approach.
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has now been improved and costs reduced, 
and microarrays are commercially available 
for a range of species. In the context of fish 
transcriptomics, a special issue of the Journal 
of Fish Biology (Miller and Maclean 2008) 
reported the progress that has been made with 
non model organisms.

Successful prospective and diagnostic case 
studies. Transcriptomic experiments in aquatic 
toxicology have been diverse—encompassing 
different microarray platforms, test species, and 
exposure routes—emphasizing their use as case 
studies rather than standardized tools. This 
wideranging approach contributes to the elu
cidation of mechanisms of toxicity, including 
dose–response relationships, differential spe
cies sensitivity, and classification of chemical 
specific biological responses. This approach 
also provides leads for identification of novel 
biomarkers of exposure and adverse effect.

Omic and bioinformatic tools offer sub
stantial promise for discovery of gene, pro
tein, and/or metabolite alterations indicative 
of the mode of action (MOA) of chemicals 
and improved understanding of mechanisms 
in prospective studies (Ankley et al. 2006). 
Knowing the MOA can reduce uncertain
ties in chemical risk assessments, providing, 
for example, a basis for extrapolating effects 
across species (Benson and Di Giulio 2007). 
There is ongoing debate as to the appropri
ate role of biomarker data in ecological risk 
assessments (Forbes et al. 2006). Historically, 
most biomarker data employed in ecotoxicol
ogy indicated exposure but had limited abil
ity to predict deleterious effects meaningful to 
risk assessment, namely, survival, growth and 
develop ment, and reproduction (Forbes et al. 
2006), largely because of a lack of mechanistic 
knowledge concerning linkages between molec
ular alterations and outcomes in the whole 
organism. Ideally, omics data would reflect 
both the MOA and deleterious outcome(s). 
To achieve this, the cascade of pathways asso
ciated with toxicity must be defined, from a 
molecular initiating event (e.g., receptor bind
ing) through subsequent biological alterations 
(reflected by omic and cellular changes) that 
culminate in a deleterious outcome (NRC 
2007). However, there is also potential for 
a contribution to understanding ecologi
cal impacts. Furthermore, omic approaches 
can contribute to the reduction of animal use 
and the severity of treatments, as more subtle 
changes can be identified and a more complete 
assessment of the health of individual animals 
or cell cultures can be achieved.

A recent example of how a toxicity pathway 
approach can be used to establish quantitative 
linkages across biological levels of organiza
tion was provided by Miller et al. (2007) and 
Ankley et al. (2008a), who investigated the 
consequences of molecular changes in the 
fish hypothalamic–pituitary–gonadal (HPG) 

axis in terms of reproductive and population 
effects. Production of vitellogenin (VTG), an 
oocyte lipoprotein produced in the liver of 
oviparous female vertebrates, can be affected 
by a range of signaling events that alter steroid 
hormone production and activity. Analysis of 
an integrated data set derived from fathead 
minnow (Pimephales promelas) reproduction 
studies, with five chemicals that decrease VTG 
and fecundity but affect the HPG axis through 
different discrete mechanisms, demonstrated 
robust associations between steroid and VTG 
concentrations in female fish. This was predic
tive of egg production and, via modeling, could 
be used to tentatively forecast fathead minnow 
population status. Thus, through understand
ing the biological pathways leading to vitello
genesis, mechanistic molecular responses were 
successfully related to potential adverse out
comes meaningful to risk assessors.

Omics data can be used in diagnostic 
studies to determine the efficacy of pollution 
remediation as part of a weightofevidence 
approach (Roling et al. 2007). Furthermore, 
omic profiling can be used to identify chemi
cal causation of effects induced by complex 
mixtures (GarciaReyero et al. 2008a). For 
example, in studies with the fathead minnow, 
Filby et al. (2007) applied multiple quanti
tative polymerase chain reaction (PCR) to 
identify diagnostic signatures from differ
ent chemicals that induce the same pheno
typic effects. The authors identified common 
features in the responses of fish exposed to 
estrogenic wastewater effluent and individual 
steroid estrogens. These data demon strate 
that patterns of gene expression induced by 
estrogenic effluents, although complex, can 
be diagnostic for some of the estrogens they 
contain and could be used by regulators to 
determine the primary contaminant.

The utility of omics in studies on environ
mental sites. The influence of the local environ
ment on the transcriptome or metabolome of 
an organism can be exploited in environmen
tal monitoring to characterize the effects of 
anthropogenic stressors such as pollution. In 
European flounder (Platichthys flesus) (Falciani 
et al. 2008), transcriptomics and genetic algo
rithm bioinformatic approaches were used 
to predict the site of origin of fish from the 
environment based on stressresponsive genes. 
Thus, although gene expression is affected 
by many environmental factors, a subset of 
genes with altered expression can inform on 
stress responses. The potential utility here is 
to improve biomarker identification and to 
identify patterns of gene expression associ
ated with different types of pollution. Bundy 
et al. (2007) sampled an earthworm species 
(Lumbricus rubellus) from seven sites with dif
ferent levels of metal contamination. Using 
nuclear magnetic resonance (NMR) metabo
lomics, the authors showed that metabolic 

profiles of the earthworms could resolve indi
vidual sites. Despite the confounding influences 
of site parameters, specific metabolites were 
correlated with zinc, the major contaminant, 
across all seven sites. Another NMR metabo
lomics study involving flounder sampled from 
industrialized and reference sites in the United 
Kingdom showed that water composition had 
a significant effect on the fish liver metabo
lome (Parsons et al. 2007). Uses of omic data 
for prognostic and diagnostic studies are sum
marized in Supplemental Material, Table 1, 
available online (doi:10.1289/ehp.0900985.S1 
via http://dx.doi.org/). These important obser
vations lend support to the implementation of 
omics as diagnostic tools in ecotoxicology.

Current Hurdles from a 
Regulatory Viewpoint
General technical hurdles in the application 
of toxicogenomics. Ankley et al. (2006) pro
posed a time frame for realizing the utility of 
omics in tiered testing. However, a number of 
factors limit widespread acceptance for regu
latory applications. In addition to complex 
relationships between omic responses and 
ecological outcome, standardized, validated 
exposure assay and analysis procedures are lack
ing (Ankley et al. 2006). Omics technologies 
can be viewed as complementary testing pro
cedures that can improve understanding of 
biological systems and can lead to develop
ment of simpler individual assays with defined 
end points. This approach, although valuable, 
does not exploit the full capabilities of omics, 
particularly their open nature, allowing dis
covery of unexpected changes. Intermediate 
technologies such as PCR arrays have been 
proposed for use in clinical diagnosis (Bustin 
and Mueller 2005) but are not open systems. 
The validation required for uptake of multi
biomarker techniques for routine testing is 
time consuming and complex. In the clinical 
setting, some targeted microarray applications 
have now been approved by the U.S. Food 
and Drug Administration and the European 
Union for diagnostic use. These include the 
Amplichip CYP450 (Roche, Indianapolis, IN, 
USA) for genotyping of human cytochromes 
P450 and Mammaprint (Agendia, Amsterdam, 
the Netherlands), a geneexpression micro
array for breast cancer prognosis (Glas et al. 
2006). Mammaprint validation required the 
testing of over 1,000 patient samples in 12,000 
assays, highlighting the effort and investment 
necessary for such accreditation. Validation 
of an assay is a complex procedure encom
passing the determination of its reliability and 
relevance. Hartung et al (2004) discussed a 
modular approach to validating alternative tests 
as part of an initiative by the European Centre 
for Validation of Alternative Methods. This 
approach [see Supplemental Material, Figure 1 
(doi:10.1289/ehp.0900985.S1)] is applicable 
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in general terms to omicsbased assays. Key to 
this procedure is defining a relevant end point. 
Biomarkers can be of exposure or of effect, 
and the choice between these biomarkers and 
the end points they aim to predict must be 
informed by the requirements of the regulators.

Corvi et al. (2006) suggested requirements 
for validation of transcriptomics in regula
tory toxicology, but it is unlikely that this 
validation process will be rapid. However, 
a realis tic application of omics techniques 
may be their use in prescreening chemi cals 
and mixtures for prioritization in further 
tests (Ankley et al. 2006). The ToxCast pro
gram (Dix et al. 2007) employed a diverse 
selection of tests, including toxicogenomics, 
and showed the potential application of this 
approach. The interpretation of omic data 
is highly reliant on advanced computational 
and statistical methods that are still being 
developed. Although quality assurance pro
cedures are paramount, more flexibility is 
permitted at the pre screening tier. The U.S. 
Environmental Protection Agency (EPA 
2002) currently accepts toxicogenomics data 
as part of a weightofevidence approach for 
establishing mechanisms of toxicity for regu
lated substances. Data capture and archiving 
are essential mechanisms for highlighting and 
avoiding the pitfalls of inappropriate experi
mental design, such as the introduction of sys
tematic variation during omics experiments. 
Although transcriptomics databases are well 
established, toxicologyspecific omics data
bases are now emerging (Waters et al. 2008).

Environmental metabolomics recently 
benefited from the first interlaboratory inter
comparison exercise to evaluate the accuracy, 
precision, and efficacy of 1H NMR metabolo
mics (Viant et al. 2009). Flounder liver extracts 
from contaminated and reference sites were 
analyzed, and multi variate statistical analyses 
confirmed high reproducibility across all seven 
laboratories involved in the study. Furthermore, 
the same metabolic biomarkers used to dif
ferentiate fish from the two sites were discov
ered by all the laboratories [see Supplemental 
Material (doi:10.1289/ehp.0900985.S1)]. For 
transcriptomics in fish, diversity of micro array 
platforms has precluded inter laboratory com
parisons, but interlaboratory micro array com
parison has been successful for mammalian 
species (e.g., Mattes 2008; Shi et al. 2006). It 
is likely that, in the future, improvements in 
the technologies for assaying gene expression, 
such as highthroughput pyro sequencing and 
digital transcriptomics (Nielsen et al. 2006), 
will replace microarrays. Already, pyrosequenc
ing allows for fast construction of highquality 
oligo nucleotide micro arrays for non model spe
cies (GarciaReyero et al. 2008b). The technol
ogy is constantly evolving, but there is one 
key question that must be addressed, whatever 
technology is in use: How do gene and protein 

expression and metabolite concentrations relate 
to ecological outcome? Progress has been made 
on this question, and initial studies on popu
lation bases are now being published [see 
Supplemental Material, Table 1 (doi:10.1289/
ehp.0900985.S1)]. Although biomarkers are 
valuable in regulatory and monitoring contexts, 
the meanings of such changes must be clari
fied to allow efficient use in regulatory deci
sion making (Adelman 2005; Boverhof and 
Zacharewski 2006).

Identifying sources of variation and mini
mizing their effects. Variability in omics data 
is an ongoing concern, particularly in rela
tion to multiple individual manipulations 
between biological sampling and data inter
pretation. Workshop participants identified 
sources of technical and biological variation 
and recom mended how these should be 
managed in terms of experimental design 
[see Supplemental Material (doi:10.1289/
ehp.0900985.S1)]. Study design, inadequate 
sample numbers, and methods of sample 
acquisition, preparation, storage, processing, 
and analysis are key areas of possible technical 
artifacts. Major sources of variability include 
methods of normalization and statistical inter
pretation. Careful study design is essential to 
minimize biological variability intra class (e.g., 
stage of reproduction in a control group), thus 
maximizing inter class differences (e.g., control 
vs. exposed groups). Interindividual variability 
within a population is essential for ecological 
health, and therefore an impact on such vari
ability from a stressor can be very important.

Training and communication.  To 
advance the application of omics technology 
into regulatory ecotoxicology and water qual
ity policy, effective scientific communication 
will be necessary among academia, industry, 
and regulators (Blunt et al. 2007). The ben
efits and limitations of omics techniques need 
to be candidly discussed so that tools with 
the potentially greatest return on investment 
(both financial and knowledge based) may be 
prioritized for utilization. Multidisciplinary 
workshops allow continued dialogue to inform 
all stake holders of develop ments. These cross
functional meetings also provide researchers 
with an understanding of the priorities of regu
latory authorities to discover practical ways of 
solving issues.

Advances in omics have significant impli
cations for risk assessment practice and regula
tory decision making. The use of genomics 
technologies generates a large volume of data, 
and the field of bioinformatics is evolving rap
idly to meet data analysis needs. A genom
ics white paper (U.S. EPA 2004) identified 
areas likely to be influenced by omics. In that 
report, the Genomics Task Force recom
mended that the agency develop training 
materials and modules to prepare risk assessors 
and decision makers who will be faced with 

the challenge of interpreting and applying 
omics information. Participants in the work
shop described here also believed that training 
was critical for furthering the application of 
genomics technologies into monitoring and 
regulation, particularly as a means of interpret
ing and applying genomics data for risk assess
ment (Dearfield et al. 2008). Risk assessors 
must be able to communicate to managers 
and stakeholders both the underlying science 
and the interpretive tools and models used to 
develop the risk assessment. Likewise, it will 
be important to provide training to risk man
agers regarding the benefits and limitations of 
genomics in risk assessments (Haymes et al. 
2009). 

There is also a need to build capacity 
within academia, the private sector, and gov
ernment agencies to implement omic tools and 
to evaluate omics data, particularly with respect 
to biological and ecological significance. These 
institutions will require resources, support, and 
targeted training to bring scientists and deci
sion makers within their organizations to a 
point where these tools can be used effectively 
in regulatory decision making, especially in 
risk assessment (U.S. EPA 2004). National 
and sub national programs and agencies should 
apply strategic hiring practices to recruit indi
viduals who possess omics skills. It would be 
useful to develop and initiate training in the 
near future to enable risk assessors and risk 
managers to evaluate and incorporate omic data 
into environmental decision making. Initial 
training could address basic omics concepts, 
technologies, and potential applications and 
include the basic steps necessary to interpret 
and apply genomics data to risk assessment.

Research needs for regulatory implementa
tion. Research needs were reviewed in two suc
cessive Society of Environmental Toxicology 
and Chemistry Pellston workshops held in 
2004 and 2005 (Ankley et al. 2006, 2008b; 
Benson and Di Giulio 2007). These efforts 
identified both short and longterm needs 
that have not yet been fully addressed because 
of resource constraints.

The shortterm needs identified were 
a) formal standardization and validation of 
data collection, analysis, and presentation for 
standard test species; and b) generation of 
libraries of gene expression, proteomic, or 
metabolite profiling data based on a set of ref
erence chemicals with welldefined, relevant 
MOAs. As explained above, there have been 
important advances in recent years in the con
text of both of these needs. The longterm 
needs identified were a) generation of genome 
sequence data for ecologically relevant species; 
and b) linkage of molecular and biochemical 
responses to adverse alterations in survival, 
growth and development, and reproduction.

Significant advances have also been made 
toward obtaining data for the develop ment of 
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reference gene expression profiling databases 
from species commonly used for regulatory 
assessments (Ankley et al. 2008b), although 
much work remains. Because toxico genomics 
data will be most valuable for predictive toxi
cology and elucidating toxicologically rele
vant MOAs for additional chemicals, a future 
database should be based on toxicity testing 
and monitoring protocols commonly used for 
regu latory purposes (e.g., global pesticide regis
trations), as well as chemicals with wellknown 
MOAs such as 17βestradiol and dioxin.

Funding. Chemical production is highest 
in member countries of the Organisation for 
Economic Cooperation and Development 
(OECD), particularly in specialty chemicals and 
the life science sectors. Moreover, innovation in 
new chemical development and manufacturing 
practices is extremely high due to advances in 
combinatorial chemistry, nano technology, and 
bio technology. These changes question the sus
tainability of current approaches to prioritiza
tion, monitoring, and risk assessment. It may be 
difficult to allocate additional resources required 
to efficiently incorporate and understand omics 
data, but it is important for programs and agen
cies to focus on these needs and to ensure that 
adequate funds and people are brought to bear 
on this need.

The OECD Environment, Health and 
Safety Program has started cooperative work 
for the use of genomic information for risk 
assessment of chemicals. The scope of this 
activity is to explore and evaluate regulatory 
application of genomic methods in chemical 
hazard/risk assessment. To reduce redundancy 
and minimize the funding to develop these 
omic technologies, international cooperation 
and a common database are essential. Target 
and crossspecies omic information and 
technologies should be developed to moni
tor animal species relevant to disparate coun
tries. There are many international examples 
of initiatives to enhance eco toxico genomics, 
for example, the Ministry of Environment 
of Japan, the Canadian government’s 
Interdepartmental Genomics initiative, the 
U.S. EPA initiatives, and the U.K. Natural 
Environment Research Council Postgenomics 
and Proteomics research program.

A considerable investment in the gener
ation and curation of appropriate reference 
exposure data is required to address the toxico
genomics needs. For example, for most chemi
cal regis trations, chronic aquatic toxicity data 
are required for one freshwater fish species 
(early lifestage toxicity), one freshwater inver
tebrate species (full lifecycle toxicity), and, in 
most cases, one saltwater fish species (early life
stage toxicity) and one saltwater invertebrate 
species (full lifecycle toxicity). This leads to a 
large number of Good Laboratory Practice–
compliant studies, and such a reference data
base would likely require ~ $10 million over 

3–5 years. Although this is a substantial cost, a 
reference database is arguably the only means 
for successful and appropriate implementa
tion of toxico genomics data into the current 
ecological risk assessment paradigm. Without a 
database to compare chemicals with unknown 
MOAs, the risk assessor will not be able to 
interpret the significance of the gene expres
sion responses within the context of charac
terizing ecological risk, because many gene 
expression changes are not anchored to adverse 
effect and risk assessment requires knowledge 
of the MOA and dose–response relationship. A 
good example of the utility of a comprehensive 
database is ToxRefDB, the Toxicity Reference 
Database (Martin et al. 2009), which contains 
mammalian toxicity data.

The most feasible way forward would be 
funding through a multi stakeholder consor
tium, such as that achieved in the ACToR 
(Aggregated Computational Toxicology 
Resource) database (Judson et al. 2008). The 
final reference database would be opensource 
and accessible through a web site. The refer
ence database could also be integrated into 
a tool similar to the U.S. Food and Drug 
Administration’s ArrayTrack to allow regula
tory agencies to easily manage, analyze, and 
interpret omics data submitted by registrants 
or other government or academic laboratories 
using similar ecological species, testing proto
cols, and microarray, proteomic, or metabolo
mic platforms.

Conclusions
Omic technologies have advanced over recent 
years and continue to become more efficient, 
datarich, and economical in use. Proof of 
principle has been achieved in terms of poten
tial application to environmental toxicology, 
specifically the assessment of environ mental 
pollution impacts in nonmodel organisms. 
Increasing the use of omics technology in 
chemical risk assessment and environmental 
monitoring requires an expanded ecotoxico
genomics reference database and a better 
understanding of the relationships between 
specific responses and biomarkers to ecologi
cal adverse events. Through improved com
munication between the sectors, the aim of 
assisting in regulatory decisions can be expe
dited through the use of omic techniques.

RefeRences

Adelman DE. 2005. The false promise of the genomics revo-
lution for environmental law. Harvard Environ Law Rev 
29(1):117–177. Available: /www.law.harvard.edu/students/
orgs/elr/vol29_1/adelman.pdf [accessed 16 November 
2009].

Ankley GT, Daston GP, Degitz SJ, Denslow ND, Hoke RA, 
Kennedy SW, et al. 2006. Toxicogenomics in regulatory 
ecotoxicology. Environ Sci Technol 40(13):4055–4065.

Ankley GT, Miller DH, Jensen KM, Villeneuve DL, Martinovic D. 
2008a. Relationship of plasma sex steroid concentrations 
in female fathead minnows to reproductive success and 
population status. Aquat Toxicol 88(1):69–74.

Ankley G, Miracle A, Perkins E, Daston G. 2008b. Genomics in 
Regulatory Ecotoxicology. Pensacola, FL:SETAC Press.

Benson W, Di Giulio R. 2007. Genomic Approaches for Cross-
species Extrapolation in Toxicology. Pensacola, FL:SETAC 
Press.

Blunt RE, Walsh KA, Ashton DK, Viant MR, Chipman JK. 2007. 
Knowledge transfer initiative between molecular biologists 
and environmental researchers and regulators. Environ Sci 
Pollut Res Int 14(5):293–296.

Boverhof DR, Zacharewski TR. 2006. Toxicogenomics in 
risk assess ment: appli cations and needs. Toxicol Sci  
89(2):352–360.

Bundy JG, Keun HC, Sidhu JK, Spurgeon DJ, Svendsen C, Kille P, 
et al. 2007. Metabolic profile biomarkers of metal contami-
nation in a sentinel terrestrial species are applicable across 
multiple sites. Environ Sci Technol 41(12):4458–4464.

Bustin SA, Mueller R. 2005. Real-time reverse transcription 
PCR (qRT-PCR) and its potential use in clinical diagnosis. 
Clin Sci (Lond) 109(4):365–379.

Corvi R, Ahr HJ, Albertini S, Blakey DH, Clerici L, Coecke S, et al. 
2006. Meeting report: validation of toxicogenomics-based 
test systems: ECVAM-ICCVAM/NICEATM considerations 
for regulatory use. Environ Health Perspect 114:420–429.

Dearfield KL, Benson WH, Gallagher K, Johnson J. 2008. Activities 
to address genomics needs at the U.S. Environmental 
Protection Agency. In: Genomics and Environmental 
Regulation: Science, Ethics and Law (Sharp R, Marchant G, 
Grodsky J, eds). Baltimore, MD:Johns Hopkins University 
Press, 25–34.

Dix DJ, Houck KA, Martin MT, Richard AM, Setzer RW, Kavlock RJ. 
2007. The ToxCast program for prioritizing toxicity testing of 
environmental chemicals. Toxicol Sci 95(1):5–12.

Falciani F, Diab AM, Sabine V, Williams TD, Ortega F, 
George SG, et al. 2008. Hepatic transcriptomic profiles of 
European flounder (Platichthys flesus) from field sites and 
computational approaches to predict site from stress gene 
responses following exposure to model toxicants. Aquat 
Toxicol 90(2):92–101.

Filby AL, Santos EM, Thorpe KL, Maack G, Tyler CR. 2007. Gene 
expression profiling for understanding chemical causation 
of biological effects for complex mixtures: a case study on 
estrogens. Environ Sci Technol 41(23):8187–8194.

Forbes VE, Palmqvist A, Bach L. 2006. The use and misuse 
of biomarkers in ecotoxicology. Environ Toxicol Chem 
25(1):272–280.

Garcia-Reyero N, Adelman I, Liu L, Denslow N. 2008a. Gene 
expression profiles of fathead minnows exposed to sur-
face waters above and below a sewage treatment plant in 
Minnesota. Mar Environ Res 66(1):134–136.

Garcia-Reyero N, Griffitt RJ, Liu L, Kroll KJ, Farmerie WG, 
Barber DS, et al. 2008b. Construction of a robust microarray 
from a non-model species largemouth bass, Micropterus 
salmoides, using pyrosequencing technology. J Fish Biol 
72(9):2354–2376.

Glas AM, Floore A, Delahaye LJ, Witteveen AT, Pover RC, 
Bakx N, et al. 2006. Converting a breast cancer micro-
array signature into a high-throughput diagnostic test. 
BMC Genomics 7:278; doi:10.1186/1471-2164-7-278 [Online 
30 October 2006]. 

Hartung T, Bremer S, Casati S, Coecke S, Corvi R, Fortaner S, 
et al. 2004. A modular approach to the ECVAM principles 
on test validity. Altern Lab Anim 32(5):467–472.

Haymes KM, Hester SD, Benson WH, McClintock JT. 2009. 
Potential use of microarray technology at the U.S. 
Environmental Protection Agency. In: Genomics: 
Fundamentals and Applications (Choudhuri S, Carlson DB, 
eds). New York: Informa Healthcare USA, 379–396.

Judson R, Richard A, Dix D, Houck K, Elloumi F, Martin M, 
et al. 2008. ACToR—Aggregated Computational Toxicology 
Resource. Toxicol Appl Pharmacol 233(1):7–13.

Martin MT, Judson RS, Reif DM, Kavlock RJ, Dix DJ. 2009. 
Profiling chemicals based on chronic toxicity results from 
the U.S. EPA ToxRef Database. Environ Health Perspect 
117:392–399.

Mattes WB. 2008. Public consortium efforts in toxicogenomics. 
Methods Mol Biol 460:221–238.

Miller DH, Jensen KM, Villeneuve DL, Kahl MD, Makynen EA, 
Durhan EJ, et al. 2007. Linkage of biochemical responses 
to population-level effects: a case study with vitellogenin in 
the fathead minnow (Pimephales promelas). Environ Toxicol 
Chem 26(3):521–527.

Miller KM, Maclean N. 2008. Teleost microarrays: development in 
a broad phylogenetic range reflecting diverse applications. 
J Fish Biol 72(9):2039–2050.



Omics, pollutants, and the environment

Environmental Health Perspectives • volume 118 | number 1 | January 2010 5

Nielsen KL, Hogh AL, Emmersen J. 2006. DeepSAGE—digital 
transcriptomics with high sensitivity, simple experimental 
protocol and multiplexing of samples. Nucleic Acids Res 
34(19):e133; doi:10.1093/nar/gkl714 [Online 5 October 2006]. 

NRC (National Research Council). 2007. Toxicity Testing in the 
Twenty-first Century: A Vision and a Strategy. Washington, 
DC:National Academies Press.

Parsons HM, Ludwig C, Gunther UL, Viant MR. 2007. Improved 
classification accuracy in 1- and 2-dimensional NMR 
metabo lomics data using the variance stabilising genera-
lised logarithm transformation. BMC Bioinformatics 8:234; 
doi:10.1186/1471-2105-8-234 [Online 2 July 2007]. 

Roling JA, Bain LJ, Gardea-Torresdey J, Key PB, Baldwin WS. 

2007. Using mummichog (Fundulus heteroclitus) arrays to 
monitor the effectiveness of remediation at a Superfund 
site in Charleston, South Carolina, U.S.A. Environ Toxicol 
Chem 26(6):1205–1213.

Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC, 
et al. 2006. The MicroArray Quality Control (MAQC) proj-
ect shows inter- and intraplatform reproducibility of gene 
expression measurements. Nat Biotechnol 24(9):1151–1161.

U.S. EPA. 2002. Interim Policy on Genomics: Science Policy 
Council. Washington, DC:U.S. Environmental Protection 
Agency. 

U.S. EPA. 2004. Potential Implications of Genomics for 
Regulatory and Risk Assessment Applications at EPA. 

EPA 100/B-04/002. Washington, DC:U.S. Environmental 
Protection Agency. Available: http://www.epa.gov/
osa/pdfs/EPA-Genomics-White-Paper.pdf [accessed 
16 November 2009]. 

Viant MR, Bearden DW, Bundy JG, Burton IW, Collette TW, 
Ekman DR, et al. 2009. International NMR-based environ-
mental metabolomics intercomparison exercise. Environ 
Sci Technol 43(1):219–225

Waters M, Stasiewicz S, Merrick BA, Tomer K, Bushel P, 
Paules R, et al. 2008. CEBS—Chemical Effects in Biological 
Systems: a public data repository integrating study design 
and toxicity data with microarray and proteomics data. 
Nucleic Acids Res 36:D892–900.


